provider
: Choose from ollama
, litellm
and openai
. R2R defaults to using the LiteLLM framework for maximum embedding provider flexibility.base_model
: Specifies the embedding model to use. Format is typically “provider/model-name” (e.g., "openai/text-embedding-3-small"
).base_dimension
: Sets the dimension of the embedding vectors. Should match the output dimension of the chosen model.batch_size
: Determines the number of texts to embed in a single API call. Larger values can improve throughput but may increase latency.add_title_as_prefix
: When true, prepends the document title to the text before embedding, providing additional context.rerank_model
: Specifies a model for reranking results. Set to “None” to disable reranking (note: not supported by LiteLLMEmbeddingProvider).concurrent_request_limit
: Sets the maximum number of concurrent embedding requests to manage load and avoid rate limiting.